Businesses which fail to keep their data clean not only risk reputational damage – as well as failed artificial intelligence implementations – so-called “dirty data” is also costing the UK economy £900bn a year, with retailers the worst culprits.
So says a new study from The Software Bureau, which points out that a single ‘inaccurate’ customer record currently costs an organisation just over £81 a year in lost revenue or even regulatory action, according to Salesforce.
Experian research reveals that 22% of customer records within the average database are inaccurate. This means that an organisation with a database comprising 500,000 customer records could be looking at a £811,000 cost to the business.
Add in the mix the fact that the impact of unclean data is estimated to stand at 20% of an organisation’s revenue, in 2023 revenue of UK business is thought to total £4.5 trillion, meaning that failing to keep customer data up-to-date will cost £900bn.
The retail sector was found to have the highest associated cost of unclean data at £300bn, followed by manufacturing (£121bn); professional services (£91bn); construction (£74bn); IT (£71bn); utilities (£40bn); healthcare (£21bn); hospitality (£21bn); property (£14bn); entertainment (£14bn); agriculture, forestry and fishing (£10bn); and education (£5.4bn)
The study categorises unhygienic data into four main types: inaccurate data, duplicated data, deceased data and goneaway data.
Inaccurate data is the most common form of dirty data and accounts for a significant portion of the overall cost. it includes inaccurate contact information, such as postal addresses, email addresses or phone numbers. It is the primary driver of inefficiencies in marketing campaigns, customer communications, and lost sales opportunities.
Meanwhile, duplicated records are not only a waste of storage space but also result in erroneous reporting and skewed analytics. Identifying and merging these records is a time-consuming task for data professionals, further increasing the cost.
And keeping records of deceased individuals is not only costly but also ethically questionable. Such data leads to brand damage and can cause distress to the individuals’ families.
Finally, goneaway data can result in substantial mailing costs and marketing efforts targeting the wrong audience.
The financial consequences of dirty data go beyond the initial data cleansing efforts. They encompass:
Brand Damage: Poor data tarnishes a company’s reputation by causing embarrassing mistakes and sending inaccurate communications to customers.
Marketing to Unreachable Recipients: Inaccurate contact information leads to wasted marketing spend as messages are sent to recipients who will never receive them.
Storage Costs: The more data an organisation has, the more it costs to store. Dirty data inflates storage expenses, making efficient data management more challenging.
Impact on data science: Unclean data adversely affects the performance of AI and machine learning algorithms, leading to incorrect insights and decisions.
Software Bureau managing director Martin Rides said: “Our findings underscore the urgency for organisations to invest in data quality solutions. The £9bn annual cost is not only a financial burden but also an impediment to business growth and innovation.
“As data continues to be a vital asset in today’s digital economy, we must acknowledge the importance of clean, accurate data to thrive in a competitive market.”
Related stories
Get data shipshape for GenAI or risk sinking, firms told
Get to grips with data hygiene if you want to clean up
Generative AI threatened by unresolved martech issues
‘Sunk-cost fallacy’ warning as CMOs gamble on martech
Failure to tackle the basics fuelling most martech flops
Just 9% of CMOs reckon martech stack is working well